2,224 research outputs found

    On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies

    Get PDF
    In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low (z≃0.3z \simeq 0.3), intermediate (z≃0.6z \simeq 0.6) and high redshift (z≃0.9z \simeq 0.9). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarisation is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.Comment: 17 pages, 15 figures, accepted for publication in MNRA

    On the void explanation of the Cold Spot

    Get PDF
    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω\omega, the ISW contribution due to the presence of the void does not reproduce the properties of the CS. Finally, the probability of alignment between the void and the CS is also questioned as an argument in favor of a physical connection between these two phenomena

    Analytic Framework for Students' Use of Mathematics in Upper-Division Physics

    Full text link
    Many students in upper-division physics courses struggle with the mathematically sophisticated tools and techniques that are required for advanced physics content. We have developed an analytical framework to assist instructors and researchers in characterizing students' difficulties with specific mathematical tools when solving the long and complex problems that are characteristic of upper-division. In this paper, we present this framework, including its motivation and development. We also describe an application of the framework to investigations of student difficulties with direct integration in electricity and magnetism (i.e., Coulomb's Law) and approximation methods in classical mechanics (i.e., Taylor series). These investigations provide examples of the types of difficulties encountered by advanced physics students, as well as the utility of the framework for both researchers and instructors.Comment: 17 pages, 4 figures, 3 tables, in Phys. Rev. - PE

    Integrated Sachs-Wolfe map recovery from NVSS and WMAP 7yr data

    Get PDF
    We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linear filter. This combination improves the quality of the map that would be obtained using information only from the Large Scale Structure data. In order to apply the filter, a given cosmological model needs to be assumed. In particular, we consider the standard LCDM model. As a test of consistency, we show that the reconstructed map is in agreemet with the assumed model, which is also favoured against a scenario where no correlation between the CMB and NVSS catalogue is considered.Comment: 6 pages, 4 figures. Minor revision, accepted for publication in MNRA

    Exploring two-spin internal linear combinations for the recovery of the CMB polarization

    Get PDF
    We present a methodology to recover cosmic microwave background (CMB) polarization in which the quantity P=Q+iUP = Q+ iU is linearly combined at different frequencies using complex coefficients. This is the most general linear combination of the QQ and UU Stokes parameters which preserves the physical coherence of the residual contribution on the CMB estimation. The approach is applied to the internal linear combination (ILC) and the internal template fitting (ITF) methodologies. The variance of PP of the resulting map is minimized to compute the coefficients of the linear combination. One of the key aspects of this procedure is that it serves to account for a global frequency-dependent shift of the polarization phase. Although in the standard case, in which no global E-B transference depending on frequency is expected in the foreground components, minimizing ⟨∣P∣2⟩\left\langle |P|^2\right\rangle is similar to minimizing ⟨Q2⟩\left\langle Q^2\right\rangle and ⟨U2⟩\left\langle U^2\right\rangle separately (as previous methodologies proceed), multiplying QQ and UU by different coefficients induces arbitrary changes in the polarization angle and it does not preserve the coherence between the spinorial components. The approach is tested on simulations, obtaining a similar residual level with respect to the one obtained with other implementations of the ILC, and perceiving the polarization rotation of a toy model with the frequency dependence of the Faraday rotation.Comment: 14 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Radial derivatives as a test of pre-Big-Bang events on the Planck data

    Get PDF
    Although the search for azimutal patterns in cosmological surveys is useful to characterise some effects depending exclusively on an angular distance within the standard model, they are considered as a key distinguishing feature of some exotic scenarios, such as bubble collisions or conformal cyclic cosmology (CCC). In particular, the CCC is a non-stardard framework which predicts circular patterns on the CMB intensity fluctuations. Motivated by some previous works which explore the presence of radial gradients, we apply a methodology based on the radial derivatives to the latest release of \textit{Planck} data. The new approach allows exhaustive studies to be performed at all sky directions at a HEALPix resolution of Nside=1024N_{\mathrm{side}} = 1024. Specifically, two different analyses are performed focusing on weight functions in both small (up to a 55-degree radius) and large scales. We present a comparison between our results and those shown by An et al. (2017), and An et al. (2018). In addition, a possible polarization counterpart of these circular patterns is also analysed for the most promising case. Taking into account the limitations to characterize the significance of the results, including the possibility of suffering a look-elsewhere effect, no strong evidence of the kind of circular patterns expected from CCC is found in the \textit{Planck} data for either the small or the large scales.Comment: 8 figures, 4 table

    Bayesian inference methodology for Primordial Power Spectrum reconstructions from Large Scale Structure

    Full text link
    We use Bayesian inference and nested sampling to develop a non-parametric method to reconstruct the primordial power spectrum PR(k)P_{\mathcal{R}}(k) from Large Scale Structure (LSS) data. The performance of the method is studied by applying it to simulations of the clustering of two different object catalogues, low-zz (ELGs) and high-zz (QSOs), and considering two different photometric errors. These object clusterings are derived from different templates of the primordial power spectrum motivated by models of inflation: the Standard Model power law characterized by the two parameters AsA_s and nsn_s; a local feature template; and a global oscillatory template. Our reconstruction method involves sampling NN knots in the log {k,PR(k)}\{k,P_{\mathcal{R}}(k)\} plane. We use two statistical tests to examine the reconstructions for signs of primordial features: a global test comparing the evidences and a novel local test quantifying the power of the hypothesis test between the power law model and the marginalized probability over NN model. The method shows good performance in all scenarios considered. In particular, the tests show no feature detection for the SM. The method is able to detect power spectrum deviations at a level of ≈2%\approx 2\% for all considered features, combining either the low-zz or the high-zz redshift bins. Other scenarios with different redshift bins, photometric errors, feature amplitudes and detection levels are also discussed. In addition, we include a first application to real data from the Sloan Digital Sky Survey Luminous Red Galaxy Data Release 4 (SDSS LRG 04), finding no preference for deviations from the primordial power law. The method is flexible, model independent, and suitable for its application to existing and future LSS catalogues.Comment: 39 pages, 21 figures, submitted to JCA
    • …
    corecore